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Abstract

In this paper we use a �lling scheme technique to prove the integrability of

two counting functions� The integrability of one of these functions implies the

a�e� convergence for the powers T nf�x��n where T belongs to a certain class

of nonlinear operators� The other counting function generalizes the upcrossing

function considered by Bishop to the case of Chacon processes� In the last section

we prove the connection between our results and previous results by Bishop� We

also provide a result which connects upcrossings and oscillations�

AMS subject classi�cation� Primary� ��A��� secondary� �	D

�

� Introduction

References ��� ��� ��� introduced the notion of upcrossing inequalities �u�i�� in the
Ergodic Theory setting� We recall the reader that the upcrossing function counts the
number of times a given sequence oscilates through a given interval� Roughly speaking�
these results established an integral inequality for a counting function relevant to some
convergence problem� Once this inequality is established� a�e� convergence follows easily�
in general there is no need to appeal to the Banach principle� Recently� new attention
has been given to this phenomena �see for example references ��� �	� ��� and it is
natural to investigate how fundamental are the counting methods implicit in the u�i� in
the context of Ergodic Theory as well as in the broader context of Analysis�

In the next section of this paper we study the u�i� in the setting of nonlinear operators�
The motivation behind this work is to prove that an u�i� holds for the nonlinear averages
��
 � ��� and� therefore� to �nd a di�erent proof for the important new result in ���
which establishes a�e� convergence for nonlinear averages� We are able to establish a
partial result in this direction� namely Theorem ��
� which proves that the function
de�ned as the number of times at which the powers T nf�x���n � �� are bigger than a
certain �xed number � is integrable for a certain class of nonlinear operators T � We
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will indicate how this result is related to the main result in ��� � It is an open problem
to extend Theorem ��
 in order to prove the a�e� convergence of the nonlinear averages
considered in that reference�

In the third section we will extend the results in ��� that reference gives a new proof
of the u�i� in the context of the Chacon�Ornstein ratio theorem� One of the snapshots
of that proof is the derivation of a connection between the �lling scheme technique and
the u�i� We will extend this technique in order to deal with the case of bounded Chacon
processes� This case is neither covered in �� nor by the more general setting developed
by Bishop in �� and ��� In this way we obtain an improved u�i� This technique allows
us to further exploit the symmetry present in ratio theorems� for instance� we derive a
surprising bound �independent of the function� for the �uctuations of ergodic averages�

In the last section we show how the upcrossing inequality obtained in section �
implies the main combinatorial inequality from ��� We also provide a simple argument
to derive bounds for the integral of the oscillations of ergodic averages from upcrossing
inequalities�
To prove our main results we will use modi�ed versions of the techniques used in ��

and ��� These two techniques are analogous� in the �rst paper an inductive procedure
indexed by the upcrossing times is de�ned� the thrust of that paper is then to show
how this inductive scheme is related to a ��lling property�� Conversely� in the second
reference� an inductive procedure indexed by the �lling times is de�ned� Thus the proof
consists in relating these times to the upcrossing times�
In the sequel �X�F � �� will be a complete ���nite measure space �unless explicitly

stated otherwise�� we will study L��X�F � ��� and will denote this space more brie�y by
L��

� Nonlinear Powers

We introduce some notation and de�nitions which will be special for this section� In
particular� for simplicity� X will be a �nite measure space� We will consider a �xed map
T from L� to itself �i�e� a mapping on L���
T is called order preserving if

f � g then Tf � Tg �f� g � L��������

We say that T is Lp nonexpansive if

kTf � Tgkp � kf � gkp �f� g � LP �������

We say T is Lp norm decreasing if

kTfkp � kfkp �f � LP �������

The following theorem is proved in ����

Theorem ���� Let T be an order preserving� L� and L� nonexpansive mapping on L��
Then for any f � L� the sequence T nf��n� �� is almost everywhere convergent�
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In the context of order preserving� L� and L� nonexpansive maps on L� Theorem ���
is equivalent to the a�e� convergence of the nonlinear Cesaro averages� To de�ne these
averages we �rst de�ne the nonlinear partial sums�

S�f � f� Sn��f � f � TSnf �n � �������

Then the associated Cesaro averages are de�ned by

Anf � Snf��n� �������

To show that Theorem ��� is equivalent to a�e� convergence for the non�linear averages
we argue as follows� Given T as above and f � L� the mapping de�ned by Tfg � Tg�f
satis�es the same properties as T and T n��

f f � Snf � Therefore the convergence of
T n
f f�n�� implies the convergence of Anf � Conversely� de�ning Tfg � Tg�f � it follows
that Sf �n Tf � T n��f where Sf �n g are the partial sums in ����� but with respect to Tf �
Hence� the convergence of Anf implies the convergence of T

nf��n� ���

In this section we will prove the following theorem�

Theorem ���� Let T be an order preserving map on L� which is L� nonexpansive� L�

norm decreasing and which satis�es T� � �� then�

lim
n��

T nf�x�

�n � ��
� � a�e�

for all f � L��

Remarks

i� Due to the assumption that T is L� norm decreasing� the relation with nonlinear
averages mentioned below equation ����� is no longer valid� This is consistent with the
results from �
 and ���� In these references it is proven that Anf does not need to
converge if the assumption that T is L� nonexpansive in Theorem ��� is replaced by the
hypothesis that T is L� norm decreasing� We refer to reference �
� Proposition ���� for
an example in which the hypothesis of Theorem ��� hold� but the hypothesis of Theorem
��� are not satis�ed�

ii� If f � L� is assumed to be nonnegative� the condition of T being L� norm decreasing
can be relaxed to T� � ��

Theorem ��� will follow easily from the next theorem� Before stating this result we need
to introduce the counting function related to the convergence of T nf��n� ���

De�nition ���� For �xed x � X� a natural number N � � and real � 	 � we de�ne

N�x� as the maximum integer n for which there are n numbers vi which satisfy� � �
v� � v� � � � � � vn � N and T vif�x� � �vi � ��� for all i��� � � � �n� The numbers
v�� v�� � � � � v�N �x� will be called the sequence 	see remark below� of maximal times at x�
We also de�ne�


�x� � supf
N�x� � N � �g�
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Remark

It is clear that it is possible to choose� for each x� a unique sequence of integers vn
independently of N � Namely� let v� be the smallest integer such that T

v�f�x� � �v������
Then� given vi� de�ne vi�� to be the smallest number greater than vi�� which satis�es
T vi��f�x� � �vi�� � ����

Theorem ��	� Let T be as in Theorem 
�� and f � L�� f � �� For each N and � as
above�

Z

N � d� �

Z
f d��������

Hence Z

 � d� �

Z
f d��������

Proof� The proof of Theorem ��
 will be completed by establishing several properties of
the following construction� Fix an integer N � � and a real number � 	 �� We will
inductively de�ne nonnegative functions fn� dn� en� �n and n where � � n � N � For
each �xed x these functions will be constructed in two stages plus some initial conditions�
The di�erent stages will be de�ned through the maximal times�

Initial conditions� The following de�nitions hold for all points of X�

�� � f� d� � �� � � ��

For a �xed x and n � � de�ne�

First Stage� The number n satis�es n �� vi for all i � f�� � � � � 
N�x�g� In this case we
say that n is of positive type �for the given x�� De�ne�

en�x� � �n�x� � n�x� n���x� � n�x�� en�x��

Second Stage� The number n equals vi for some i � f�� � � � � 
N�x�g� In this case we

say that n is of transition type �for the given x�� De�ne�

en�x� � n�x� n���x� � ��

For all x we set�

�n�� � T n��f � dn�� and dn�� � T �dn � en��

It is convenient to set fn � �n � en� We then obtain that for all n � �� �� � � � � N

nX
k��

ek � 
n� � �� � n����������
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This equation is easily checked for n � � by noticing that 
��x� � � if n � � is of positive
type and 
��x� � � otherwise� Assuming ������ is valid for n� then we will prove that it
is also true for n � �� If n� � is of positive type� we conclude


n���x� � 
n�x�� n���x� � n���x�� en���x��

This implies
n��X
k��

ek � en�� � 
n��� � �� � n�� � en����

If n � � is of transition type


n���x� � 
n�x� � �� n���x� � �� en���x� � n���x��

Hence
n��X
k��

ek � 
n��� � 
n��� � �� � n����

Therefore we have established �������

The next step is to prove that the functions fn� �n� en� and n are nonnegative
functions in L�� The fact that these are functions in L� follows from induction and
recalling that T is an operator on L�� Observe that the functions are nonnegative for
n � �� Assume that the statements hold for n � �� From the de�nitions we immediately
obtain n�� � �� Moreover� we can write

T nf � fn � dn � en

hence by the inductive hypothesis and the fact that T is order preserving�

T n��f � T �dn � en� � dn���

Therefore
�n�� � � and en�� � ��

It remains to prove fn�� � �� In the case n � � is of positive type for x we have
fn���x� � �n���x�� en���x� � � from the de�nitions� When n� � is of transition type
for x we will assume fn���x� � � and obtain a contradiction� The fact that n�� is a
transition integer for x implies

� �n� �� � T n��f�x� � en���x� � dn���x��������

Notice
� � n � �� � � en � ��

Given these equations� the hypothesis on T imply d� � � and it follows by induction
that dn � n� for any n � �� Hence en � dn � �n� ��� is valid for all n� This inequality
combined with equation ������ results in a contradiction�
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The last property that we need from our construction is�
For all n � �� �� � � � � N

Z

n � d� �

nX
k��

Z
ekd� �

Z
f d��������

The �rst inequality follows from ������� The second inequality follows easily by induction
once we prove the following inequality

Z
�k��d� �

Z
�kd� �

Z
ekd�������

for all k � �� �� � � � � N�� � Using fn � �� �n � � and the fact that T is L
� nonexpansive

we can compute as follows�

Z
�k��d� �

Z
T k��f � T �dk � ek�d� �

Z
jT kf � dk � ekjd� �

Z
��k � ek�d��

To conclude the proof of the Theorem ��
 we notice that ������ proves equation �������
Equation ������ follows by Lebesgue monotone convergence theorem�

We are now ready to proceed with the proof of Theorem ����

Proof� First assume f � �� for a �xed real number �� the function 
�x� in Theorem ��

counts the number of times that T nf�x���n � �� is greater or equal �� This function�
being integrable� is �nite a�e� To handle the case of an arbitrary f � L� we introduce a
new operator S on L� de�ned by

Sg � �T ��g��

Then�

Sn�g� � �T n��g��������

The transformation S satis�es the same properties than T � Write f � f��f�� therefore
using equation ������ with g � f� and the result for nonnegative functions we obtain�

lim
n��

T n��f���x�

�n�
� � lim

n��

Snf��x�

�n�
� �������

Using the fact that T is order preserving�

T n��f�� � T n�f� � T n�f���

Dividing by n� taking n�	� using equation ������ and the result for nonnegative
functions the proof is complete�
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� Upcrossings fo Chacon Processes

As it was pointed out in the introduction� the main purpose of this section is to generalize
the results in �� to the setting of bounded Chacon Processes� These processes are not
included in the framework considered by Bishop� The key element of the proof is Lemma
����� By using this result we are able to make a distinction between the generalized
upcrossing function and the �uctuation function and in this way to further exploit the
symmetry present in ratio theorems� As a corollary we obtain the surprising result that
the integral of the �uctuation function for the ergodic averages has a bound which is
independent of the function� The proof consists in an extension of the techniques used
in ��� hence a certain amount of repetition will occur� Henceforth all the operators
considered will be linear� We will study upcrossings� which� we recall� are de�ned as
follows� given a sequence fargr�� of real numbers and numbers � � �� the upcrossings
of the sequence through the interval ��� � is de�ned by

w � supfk � � � �ui� vi�i������ �k� � ui � vi � ui�� for i � �� � � � � kg

where � satis�es aur � � and avr � � for all r � �� � � � � k� We warn the reader
that the word upcrossings is sometimes used for quantities that bound from above the
upcrossings de�ned above� Later in this section we will rede�ne the upcrossings� but
this new de�nition will provide an upper bound for this original de�nition�

De�nition 
��� A collection fd�� d�� � � � g of �X�F � ���measurable� real valued� nonneg�
ative functions is said to be a Chacon 	or admissible� process 	with respect to a nonneg�
ative� linear� L��contraction� if�

Tdi � di�� holds for all i � ��

where we have implicitly extended the action of T from L� to include nonnegative mea�
surable functions� If� in addition� the partial sums de�ned by�

Dn � d� � d� � � � �� dn

satisfy

��D� 
 supn��
�

n

Z
�

Dnd� �	

then the process is called bounded� ��D� is called the time constant of the process�

De�nition 
��� A mapping

T � L��X�F � ��� L��X�F � ��

is called Markovian if T is a positive linear operator satisfying

Z
X

f d� �

Z
X

Tf d� �f � L�
� �

�



We will study the a�e� convergence of the ratios

Rn�x� �
Dn�x�

Cn�x�
� Dn�x� �

nX
k��

dk�x�� Cn�x� �
nX

k��

ck�x������

where fdkg and fckg are Chacon processes with respect to the same operator T � In
general� for the a�e� convergence of ������ we will need to require that T is Markovian
�T � � is a counterexample� but we will assume this only when it is needed� Therefore�
T will be a nonnegative L� contraction unless explicitly stated otherwise� Notice that
given three indices �� � u� � v� � u�� a �xed pair of real numbers � � � � � and if
the following inequalities hold�

Dui�x�

Cui�x�
� ������

Dv��x�

Cv��x�
� � i � �� �������

Then the following inequalities hold

Dv��x��Du��x�� �� Cv��x�� � Cu��x�� � � Cv��x������

Dv��x��Du��x�� �� Cv��x�� � Cu��x�� � � Cv��x������

where � � � � �� Taking into account that a Chacon process multiplied by any non�
negative real number still gives a Chacon process� we see that the the processes f�ckg
and f�ckg are also Chacon processes� This fact allows us to talk only about processes
in De�nition ��	 below without mentioning the numbers � and �� Moreover� equations
����� and ����� show that in order to bound from above the number of where ����� and
����� hold for a given x �i�e� the upcrossings through the interval ��� �� it is enough to
consider the counting function de�ned below in ������� First we need�

De�nition 
��� Let fdkg � fqkg and fpkg be three Chacon processes with respect to a
positive linear contraction T � Also �x an integer N � �� Let ur� vr� r � �� �� � � � � be
elements in f��� �� �� � � � � Ng� such that

ur � vr���
�

vr � ur��������

for all r� We denote a sequence �ur� vr�r�������� with these characteristics by �� For a
given point x � the sequence � will be called a sequence of generalized upcrossing times
at x for fdkg� fqkg and fpkg if

Dvr�x��Dur�x�� �Qvr���x��Qur�x�� � Pvr�x�������

	



for all r� and

Dvr�x��Dur���x�� �Qvr���x��Qur���x�� � Pvr�x�������

for all r such that ur�� is de�ned�

The word �generalized� refers to the fact that the v�index in equations ����� and �����
has been replaced by the index v� � in equations ������ and ������� there is also greater
�exibility by allowing a non�strict inequality in ������� It is easily seen that this rep�
resents a more general de�nition than the usual upcrossings considered by Bishop �see
����� We will exploit this extra generality in the next section �see Theorem �����
For a �xed x de�ne�


N�x� � sup fk � � � �ur� vr�r�������� �k�g������

�N�x� � sup fmax�k � �� �� � � � �ur� vr�r�������� �k�g������

Where the supremum is taken over the �nite set of all sequences of generalized upcrossing
times at x� We call 
N the generalized upcrossing function� The function �N is merely
another way of counting oscillations and because of its clear relationship to the counting
function used in �	� we call it the �uctuation function�

Remarks

Consider fdrg and fcrg to be as in equation ������ and de�nefqr � �crg and fpr �
�crg then the function 
N is an upper bound for the upcrossings of the ratios �����
through the interval ��� �� ��
The �rst result of this section is the following theorem�

Theorem 
���� Given three Chacon processes fdkg � fqkg and fpkg with respect to a
Markovian transformation T then�
For each N � ��

Z

N p� d� � � ��D�������

Z
�N p� d� � � ��Q�������

where 	���� or 	���� hold if fdkg or fqkg are bounded processes respectively�

Remarks

From the above theorem� convergence a�e� in appropiate sets for the ratios �����
can be established by standard arguments ���� ���� Roughly speaking� in equations
������ and ������� the integrals of the oscillations of the ratios are bounded by the time






constants of each process respectively� The di�erence between both equations is the
following� while the hypothesis ��D� �	 gives convergence of ����� in R� the condition
��Q� � 	 proves that the �uctuation function is �nite a�e�� however the ratios �����
may still diverge to 	� The bound given in equation ������ can be improved� at least
for the case where dk � T kd� and T is induced by a measure preserving transformation
in a �nite measure space� This is done in �	�

As it was shown in section �� we now proceed to de�ne a �lling scheme which will
be the key to the proof� In contrast to the �lling scheme in section � this construction
is not indexed by �upcrossing times�� but ��lling times�� internal to the construction�
are de�ned� We refer to �� for a motivation of the functions de�ned below�
It should be noted that we construct �n��� �n��� n��� �n��� �n��� �n�� during step n�

since these functions refer to conditions just before step n��� We also construct functions
en� hn� fn� gn during step n� These functions describe results of operations during step n�
The functions �n� �n are measurable functions taking nonnegative integer values �the
�lling times��
Given three Chacon process� we can de�ne the following construction�

Initial De�nitions

Let
�� � d�� �� � q�� � � �� � p�� �� � �� � ��

Step n

Suppose that we have already de�ned �n� �n� n� �n� �n� �n for some n � �� �� � � � �

First Turn

On f�n � �ng let en � �n�n� On f�n � �ng
c let en � �� On f�n � �ng�fen � ng let

�n�� � �n � �� n�� � p�� On �f�n � �ng � fen � ng�
c let �n�� � �n� n�� � n � en�

Second Turn

On f�n�� � �n � �g let hn � �n � �n� On f�n�� � �n � �g
c let hn � �� On f�n�� �

�n � �g � fhn � �ng let �n�� � �n � �� �n�� � p�� On �f�n�� � �n � �g � fhn � �ng�
c

let �n�� � �n� �n�� � �n � hn�

Third Turn

Let fn � �n � en� gn � �n � hn� and de�ne

�n�� � dn�� �
nX

k��

T n���kek

��



�n�� � qn�� �
nX

k��

T n���khk�

It is easy to see by induction that the sequences ��n� and ��n� are nondecreasing� and
that

�n � �n � �n�� � �n � �����	�

for all n� In particular �n � n for all n�
The following identities are easily proven

dn � fn �
nX

k��

T n�kek����
�

qn�� � gn �
nX

k��

T n�khk�������

A simple induction shows that �n� en and n are nonnegative for all n � �� In fact� this
is true for n � � and suppose it holds for n� It follows from the de�nitions that n�� � �
and by the inductive hypothesis fn � �� Using the fact that fdkg is a Chacon process
and equation ����
�

�n�� � dn�� �
nX

k��

T n���kek � Tfn � ��

A similar argument shows �n� �n and hn are also nonnegative functions� Then� it follows
that for all n we have

� � en � n � p�� � � hn � �n � p��������

The �lling scheme just de�ned is the same that the one introduced in �� but with a
di�erent de�nition �here adapted to the Chacon processes� for the functions �n and �n�
The following lemma is easily proven�

Lemma 
���� For all n � ��� �� �� � � � �

nX
k��

ek � �n��p� � �p� � n���������

and

nX
k��

hk � �n��p� � �p� � �n����������

��



We de�ne the quantities�

�n � p� �
n��X
k��

�hk � ek�� �n �
nX

k��

ek �
n��X
k��

hk������

for each n � �� �� � � � � We also let �n � p� and �n � � for all negative integers n� It
follows easily from the de�nitions that for all n � ��

�n � en � �n � p�� �n�� � �n � hn � p��������

Also whenever �n � �n �and hence f�n � p�g� using Lemma � and ������ we obtain

�n � n� �n � p� � �n � en�� for all n � ��������

Moreover whenever �n�� � �n�� �and hence fn�� � p�g� using Lemma � and equation
������ we obtain

�n�� � p� � ��n � hn�� �n � �n for all n � ������	�

Therefore the following relations are valid

� � �n � p�� � � �n � p�����
�

for all n�
The proof that follows is essentially contained in Lemma � from ��� There are some

subtle di�erences due to our particular setting� therefore� for the sake of completeness�
we present the main steps in the proof�

Lemma 
�
� We use the notation from De�nition	��� � let U be the set of all se�
quences � � �ur� vr�r�������� satisfying 	��� and 	����� For any � � U � let H��� be the
set of x such that � is a sequence of generalized upcrossing times at x for fdrg � fqrg
and fprg Let � � U � � � �ur� vr�r�������� �k��

	i� If r � k then�

r � �vr�� almost everywhere on H����������

and

	ii� If r � k � � then�

r � �ur���� almost everywhere on H����������

��



Proof� For a �xed k we will prove the result by an induction on n � f��� �� � � � � Ng�
The inductive hypothesis is the following�

a� Statement i� above holds for all r such that vr � n�

b� Statement ii� above holds for all r such that ur�� � n�

For n � �� the inequalities vr � n and ur�� � n never hold� Assume that i� and ii�
hold for n � ��� �� � � � � m � �� for some m � �� We will prove that they also hold for
n � m�
Suppose vr � m� if we set l � ur then l � m� By the inductive hypothesis it follows

that r � � � �l�� almost everywhere on H���� We would like �rst to conclude i�� i�e�
r � �m�� almost everywhere on H���� On the set f�l�� � r � �g � ffj � �g� for any
j � l � �� � � � � m� we conclude from the de�nition of �j�� and the fact that r� � � �l��
that r � �j��� Therefore we need only consider �m�� on the set

A � f�m � r � �g � ffl�� � �g � � � � ffm � �g �H����

Using the equations ������� ����
� and ������ we obtain that the following inequality is
valid on the set A

mX
j��

pj �
mX

j�l��

jX
k��

T j�kek �
m��X
j�l��

jX
k��

T j�khk�������

Using the relationship T jp� � pj� exchanging the order of sums� using the de�nition of
�n and �n� and integrating over A� we have

mX
j��

Z
�T �j�A�p�d� �

mX
j��

Z
�T �j���m�i � �l���i � p��d��������

Given that � � �n� �n � p� we conclude

�T �j��m�i � �T
�j�p�

almost everywhere for each j � �� � � � � m� hence �m � p� almost everywhere on A� From
equation ������ it follows that em � m� hence �m�� � �m � � � r � � � � on A� So
�m�� � r� This argument completes the proof of a�� The proof of b� is analogous� we
refer to reference �� for details�

The preceeding lemma provides a very detailed description of how the �lling times
��x� and ��x� count the number of upcrossings and �uctuations respectively� In the
next corollary we explicitly state what we are going to actually need from Lemma �����

Corollary 
�
�� Almost everywhere on the set X the following inqualities hold�


N�x� � �N���x�������

��



�N�x� � �N���x��������

With these results we can proceed with the proof of Theorem �����

Proof� Let�s assume that ��D� �	� From ����
� and the fact that T is Markovian we
obtain for every n�

�n� ��
nX

k��

Z
ekd� �

�n��X
k��

Z
dkd������	�

Therefore� using equations ������� ������ and ������ we conclude

Z

N p� d� �

Z
�N�� p� d� �

NX
k��

Z
ekd� �

�

N � �

�N��X
k��

Z
dkd� � � ��D� �

Similarly� if ��Q� �	 we obtain�

Z
�N p� d� �

Z
�N�� p� d� �

NX
k��

Z
hkd� �

�

N � �

�N��X
k��

Z
qkd� � � ��Q� �

It is important to remark that the condition of T being Markovian is only used in
equation ����	�� This condition is not used in any of the intermediate results which lead
to Theorem ���� either� Under the assumption that fdkg is actually an additive process
and T is an L� contraction we can derive�

NX
k��

Z
ekd� �

Z
d�d��

This equation and an argument similar to the given above can be used to prove an u�i�
in the setting of Chacon theorem �see ��� p� �����

Theorem 
�
	� Given two Chacon processes fqkg� fpkg and an additive process fdkg
with respect to a positive L� contraction T then�
For each N � ��

Z

N p� d� �

Z
d�d� �������

Corollary 
���� Consider the ergodic averages

Rn�x� �
�

n� �

nX
k��

T kd�

��



where T is a positive linear contraction satisfying T� � � and in De�nition ��� take
fdk � T kd�g� fqk � �g and fpk � �g equation 	���� becomes

Z
�Nd� �

���X�

�
�������

Whenever ��X� is �nite� equation ������ gives the surprising result that for a �xed � we
get a uniform bound in � independently of d��

� Bishop�s Lemma

In this section we will use Theorem ���� to stablish Lemma � from ��� This is an
interesting combinatorial inequality which� as proven in ��� implies Lebesgue�s di�eren�
tiation theorem� the ergodic theorem for measure preserving transformations and Doob�s
martingale theorem� We will also indicate how an improved version of the upcrossing
inequalities presented in the previous section implies integral bounds for the oscillations
of ergodic averages� Oscillations in Ergodic Theory have recently received due atten�
tion in ��� Let us consider the situation described in Bishop �rst� Here we are given
real numbers � � � and a set of points �  R�� � � fx�� y�� � � � � xn� yng� where � is
elementary� In particular this means that

xi��� � �xi��� � yi� � �yi������

for i � �� � � � � n� �� Moreover� the following also holds for an elementary set �

xi� � yi�� xi� � yi� for i � �� � � � � n�

Below we de�ne the counting function considered by Bishop�

De�nition ���� Given real numbers �� � as above� an elementary set � � z � �z�� z�� �
R� and t � R� Then de�ne


�z� �� ���� � supfk � �x�� y�� � � � � xk� yk � � with property P �z� �� ��g�

Where the points x�� y�� � � � � xk� yk � � are said to have the property P �z� �� �� if

z� � x��� x
i
� � �xi� � zi� � �zi�� and z

i
� � �zi� � yi� � �yi�� for all � � i � k�

Finally de�ne�


�t� �� ���� � supf
�z� �� ���� � z� � tg�����

Theorem ���� If � is elementary

Z

�t� �� ����dt � �� � ����

nX
�

�yi� � xi���

��



Proof� Let

B � fx��� � � � � x
n
�g������

Let � � fu�� v�� � � � � uk� vkg  �� where ui� � vi� for all i and vi� � ui��� for all i �
�� � � � � k � �� Then we will say that � is an admissible sequence of length k� For any
t � R we will say that � is t�admissible if t � u�� and if for all i� j � f�� � � � � kg we have

�ui� � �ui��� �v
j
� � �vj�� � �� � ��t������

De�ne the function � on R by

��t� � supflength � � � is t�admissibleg������

It is easy to see that
��t� � 
�t� �� �����

where 
�t� �� ���� is the quantity de�ned above�
We are required to prove�

Z
� dt � ���� � ��

nX
i��

�yi� � xi������	�

Suppose that �k 	 �� Lk � �kZ� ClearlyZ
�dt � lim

k��
�k
X
t�Lk

��t� �k�����
�

By an approximation argument we can easily reduce the proof to the case where for
some � 	 � we have B  �Z� Thus we can choose �k � � such that B  �kZ for all k�
Thus to prove Lemma � of �� it is enough to show for any � 	 � with B  �Z we have

�
X

t�L�B

��t� �� � ���� � ��
nX
i��

�yi� � xi���������

Fix �� and let � � L� L be de�ned by ��t� � t��� De�ne T on functions by Tf � f �� �
Let J be a �nite interval of L containing B� and large enough so that J contains any
point t in L with ��t� 	 �� �It is easy to see that such an interval exists�� Let

p � �� � ����J �������

Let

f�xi�� � yi� � xi��������

for i � �� � � � � n� and let f�t� � � for all other t � L� Let

g�xi�� � yi� � xi��� � ��xi��� � xi���������

��



for i � �� � � � � n � �� and let g�t� � � for all other t � L� Let t � L � B and let
� � �ui� vi�i�������k be �t� ���admissible� For each i � �� � � � � k� there exists mi such that
either ui � xmi or ui � ymi� After considering ����� for a moment we notice that we can
modify �� if necessary� to ensure that ui � xmi � Similarly we can ensure that for each
j � �� � � � � k there exists some �j such that v

j � y�j � We would like to show that the
quantities T� f� g� p have at least k upcrossings at x� To do that we have to construct
an upcrossing sequence in the sense of Section �� We can�t work with the letters u and
v because we have used them when re�writing Bishop�s de�nition �i�e De�nition �����
therefore� we will call our times �r and �r� Let �r be that nonnegative integer such that

� �r���t� � ur� � xmr

� �������

for r � �� � � � � k�
Let �r be that positive integer such that

� �r�t� � vr� � x�r� �������

for r � �� � � � � k�
Let

xq� � inffx
i
� � t � xi�g�������

Now consider
�rX
j��

T j�f � g��t� �
X

q�i�mr

�f � g��xi���

This is
X

q�i�mr

��yi� � xi��� �y
i
� � xi��� �� ��xi��� � xi�� � xmr

� � xq� � ��xmr

� � xq���

Hence we have shown that

�rX
j��

T j�f � g��t� � ur� � �ur� � �x
q
� � �xq���������

We also want to consider

�r��X
j��

T j�f � g � p��t� � T �r�f � p��t� �

�r��X
j��

T j�f � g��t� � T �rf�t��

�rX
j��

T jp�t��

This is

����	�
X

q�i��r

�f � g��xi�� � f�x�r� �� �� � ���x�r� � t� �� �

x�r� � xq� � ��x�r� � xq�� � y�r� � x�r� � �� � ���x�r� � t � ���

��



Hence we have shown that

�r��X
j��

T j�f � g � p��t� � T �r�f � p��t� � vr� � �vr� � �x
q
� � �xq�� � �� � ���t� �������
�

Using these equations and ����� �with t replaced by t��� it follows easily that ��� ��� � � � �
�k� �k is a generalized upcrossing sequence at t� Hence we have shown that for any
t � L� B we have

��t� �� � 
�t��������

where 
 is the function de�ned in our paper rather than one of the functions in Bishop�
By Theorem ���� from Section � we then have

X
t�L�B

��t� ��p�t� �
X
t�L

f�t��������

and this is �������

We will end this section by presenting a simple argument that links the notion of
upcrossings to oscillations �see de�nition below�� For the rest of this section we use
the following notation and assumptions� for f � L��X� �X a �nite measure space��
Anf�x� �

�
n��

Pn

k�� T
kf�x� denotes the Cesaro averages for a positive linear contraction

T satisfying T� � �� We also de�ne A��f�x� � � for all x�

De�nition ����� For a �xed integer N 	 �� a real number � 	 � and x � X� de�ne

zN���x� � supfk � � � �tr�r������ �k�g

where � satis�es�

�� � t� � t� � � � � tk � N

and

jAtr��f�x�� Atrf�x�j � �� for all r � �� � � � � k � �������

also de�ne
z��x� � supfzN���x� � N 	 �g

the function z� will be called the oscillation function 	also called ��jumps� see �����

We will use a result on upcrossing inequalities established by Bishop in �� �Theorem �
and Corollary pp� ������	� see also ���� Before stating this theorem� we introduce some
notation� The function wN���	�x� in the theorem below is de�ned as follows� for f � L��
an integer N 	 �� a real number �� and a real number � 	 � de�ne

wN���	�x� � supfk � � � �ur� vr�r������ �k�g������

�	



where the sequence � satis�es�

�� � u� � v� � u� � � � � � vk � N������

Aurf�x� � � and Avrf�x� � �� � ��������

for r � �� � � � � k�

Bishop�s theorem is�

Theorem ����� For N��� � and f as above�Z
wN���	d� �

�

�

Z
�f � ���d�

Remark

Theorem ���� is true in a more general setting� in fact the upcrossing function con�
sidered by Bishop is an upper bound for the function de�ned above� We also remark that
our generalized upcrossing function from the previous section is also an upper bound for
the function wN���	� however Theorem ���
 is not strong enough to establish Theorem
���	 below�
The following theorem generalizes results from �� to the operator case�

Theorem ����� Let f � L��X�� f � � and a real number � 	 �� then�Z
z�d� �

	

��

Z
f �d������
�

Proof� We will prove� Z
zN��d� �

	

��

Z
f �d�

De�ne �i � i �

�
for i � �� � � � � Also de�ne�

wN�
�
�
�x� �

�X
i��

wN�
�
�
�	i�x��

We now make the key observation that for all x where the quantities are de�ned�

zN���x� � � wN�
�
�
�x��������

Using Theorem ���� we compute�

�X
i��

Z
wN� �

�
�	id� �

�

�

�X
i��

Z
ff
	ig

�f � �i�d� �
�

�

Z i�
�f
�X

i��

�f � i
�

�
�d� �

�

��

Z
f �d��

Hence by Fubini�s theorem�Z
zN���x�d� �

Z
� wN�

�
�
d� �

	

��

Z
f �d��

�
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