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Abstract

In this paper we use a filling scheme technique to prove the integrability of
two counting functions. The integrability of one of these functions implies the
a.e. convergence for the powers T" f(x)/n where T belongs to a certain class
of nonlinear operators. The other counting function generalizes the upcrossing
function considered by Bishop to the case of Chacon processes. In the last section
we prove the connection between our results and previous results by Bishop. We
also provide a result which connects upcrossings and oscillations.

AMS subject classification: Primary: 47A35; secondary: 28D99.

1 Introduction

References [2], [3], [4], introduced the notion of upcrossing inequalities (u.i.) in the
Ergodic Theory setting. We recall the reader that the upcrossing function counts the
number of times a given sequence oscilates through a given interval. Roughly speaking,
these results established an integral inequality for a counting function relevant to some
convergence problem. Once this inequality is established, a.e. convergence follows easily;
in general there is no need to appeal to the Banach principle. Recently, new attention
has been given to this phenomena (see for example references [1], [8], [6]) and it is
natural to investigate how fundamental are the counting methods implicit in the u.i. in
the context of Ergodic Theory as well as in the broader context of Analysis.

In the next section of this paper we study the u.i. in the setting of nonlinear operators.
The motivation behind this work is to prove that an u.i. holds for the nonlinear averages
([9] , [7]) and, therefore, to find a different proof for the important new result in [10]
which establishes a.e. convergence for nonlinear averages. We are able to establish a
partial result in this direction, namely Theorem 2.9, which proves that the function
defined as the number of times at which the powers 7" f(x)/(n + 1) are bigger than a
certain fixed number 7 is integrable for a certain class of nonlinear operators 7. We



will indicate how this result is related to the main result in [10] . It is an open problem
to extend Theorem 2.9 in order to prove the a.e. convergence of the nonlinear averages
considered in that reference.

In the third section we will extend the results in [1], that reference gives a new proof
of the u.i. in the context of the Chacon-Ornstein ratio theorem. One of the snapshots
of that proof is the derivation of a connection between the filling scheme technique and
the u.i. We will extend this technique in order to deal with the case of bounded Chacon
processes. This case is neither covered in [1] nor by the more general setting developed
by Bishop in [3] and [4]. In this way we obtain an improved u.i. This technique allows
us to further exploit the symmetry present in ratio theorems, for instance, we derive a
surprising bound (independent of the function) for the fluctuations of ergodic averages.

In the last section we show how the upcrossing inequality obtained in section 3
implies the main combinatorial inequality from [2]. We also provide a simple argument
to derive bounds for the integral of the oscillations of ergodic averages from upcrossing
inequalities.

To prove our main results we will use modified versions of the techniques used in [4]
and [1]. These two techniques are analogous; in the first paper an inductive procedure
indexed by the upcrossing times is defined; the thrust of that paper is then to show
how this inductive scheme is related to a “filling property.” Conversely, in the second
reference, an inductive procedure indexed by the filling times is defined. Thus the proof
consists in relating these times to the upcrossing times.

In the sequel (X, F, ) will be a complete o-finite measure space (unless explicitly
stated otherwise); we will study L'(X,F, i), and will denote this space more briefly by
L.

2 Nonlinear Powers

We introduce some notation and definitions which will be special for this section. In
particular, for simplicity, X will be a finite measure space. We will consider a fixed map
T from L' to itself (i.e. a mapping on L').

T is called order preserving if

(2.1) f<g then Tf<Tg (f,ge€lL").

We say that T is LP nonezxpansive if

(2.2) ITf=Tgll, <|If —all, (f.g€L").
We say 1" is LP norm decreasing if
(2.3) ITfll < Ifll (F €LP).

The following theorem is proved in [10].

Theorem 2.4. Let T be an order preserving, L' and L™ nonexpansive mapping on L*.
Then for any f € L' the sequence T"f/(n + 1) is almost everywhere convergent.



In the context of order preserving, L' and L> nonexpansive maps on L' Theorem 2.4
is equivalent to the a.e. convergence of the nonlinear Cesaro averages. To define these
averages we first define the nonlinear partial sums:

Then the associated Cesaro averages are defined by

(2.6) Anf = Snf/(n + 1)

To show that Theorem 2.4 is equivalent to a.e. convergence for the non-linear averages
we argue as follows. Given T as above and f € L' the mapping defined by Tjg = Tg+ f
satisfies the same properties as 7" and T}”l f = Snf. Therefore the convergence of
T7 f/n+ 1 implies the convergence of A, f. Conversely, defining Tyg = T)g — f, it follows
that S¢,, Tf = T"*! f where Sy,, g are the partial sums in (2.5) but with respect to T7.
Hence, the convergence of A, f implies the convergence of T"f/(n + 1).

In this section we will prove the following theorem.

Theorem 2.7. Let T be an order preserving map on L' which is L' nonexpansive, L™
norm decreasing and which satisfies TO = 0, then:

1)

forall f € L',

Remarks

i) Due to the assumption that 7" is L* norm decreasing, the relation with nonlinear
averages mentioned below equation (2.6) is no longer valid. This is consistent with the
results from [9] and [10]. In these references it is proven that A, f does not need to
converge if the assumption that T is L*™ nonezpansive in Theorem 2.4 is replaced by the
hypothesis that 7" is L norm decreasing. We refer to reference [9], Proposition 5.1, for
an example in which the hypothesis of Theorem 2.7 hold, but the hypothesis of Theorem
2.4 are not satisfied.

i) If f € L' is assumed to be nonnegative, the condition of T being L> norm decreasing
can be relaxed to Ta < a.

Theorem 2.7 will follow easily from the next theorem. Before stating this result we need
to introduce the counting function related to the convergence of T"f/(n + 1).

Definition 2.8. For fized x € X, a natural number N > 0 and real n > 0 we define
wn(x) as the mazimum integer n for which there are n numbers v; which satisfy, 0 <
v < vy < ...<v, <N and T f(x) > (v; + 1)n for all i=1, ... ,n. The numbers
V1, V2, - - -, Vo (z) Will be called the sequence (see remark below) of mazimal times at x.
We also define:

w(z) = sup{wn(x) : N > 0}.



Remark

It is clear that it is possible to choose, for each x, a unique sequence of integers v,
independently of N. Namely, let v; be the smallest integer such that T f(z) > (v +1)7.
Then, given v;, define v;,; to be the smallest number greater than v;,; which satisfies
T4 f(z) > (vis1 + D

Theorem 2.9. Let T be as in Theorem 2.7 and f € L', f > 0. For each N and n as
above,

(2.10) /wNnd,ug/fd,u.

Hence

(2.11) /wndug/fdu.

Proof. The proof of Theorem 2.9 will be completed by establishing several properties of
the following construction. Fix an integer N > 0 and a real number n > 0. We will
inductively define nonnegative functions f,, d,, e,, ¢, and 7, where 0 < n < N. For
each fixed x these functions will be constructed in two stages plus some initial conditions.
The different stages will be defined through the maximal times.

Initial conditions: The following definitions hold for all points of X.
po=1f, do=0, m=n.
For a fixed x and n > 0 define.

First Stage: The number n satisfies n # v; for all i € {1,... ,wy(z)}. In this case we
say that n is of positive type (for the given z). Define,

en(z) = on(@) Ao (1) Tngr(2) = T (2) — €n(2).
Second Stage: The number n equals v; for some i € {1,... ,wy(x)}. In this case we
say that n is of transition type (for the given x). Define,
en(r) = mn(2)  Mnpa(z) = 1.
For all = we set,
Oni1 =T f —dpr and  dpyy = T(d, + €5).

It is convenient to set f, = ¢, —e,. We then obtain that for alln =0,1,... /N

n

(2.12) Z e = wpt + (1 — Tpy1).
k=0



This equation is easily checked for n = 0 by noticing that wy(z) = 0if n = 0 is of positive
type and wy(x) = 1 otherwise. Assuming (2.12) is valid for n, then we will prove that it
is also true for n + 1. If n + 1 is of positive type, we conclude

Wn1 (1) = wp(z),  Tny2(r) = Ty (7) — enga ().
This implies
n+1

Z €k = Cny1 + Wup1 + (N — Tug2 — €ng1).
k=0

If n + 1 is of transition type

w1 () =wn(@) + 1, Tppa(@) =0, ent1(z) = Ty (2).
Hence
n+1
Z €k = Wni11] = Wn11 + (7 — Tns2).
k=0
Therefore we have established (2.12).

The next step is to prove that the functions f,, ¢,, e,, and m, are nonnegative
functions in L'. The fact that these are functions in L' follows from induction and
recalling that T is an operator on L'. Observe that the functions are nonnegative for
n = 0. Assume that the statements hold for n > 0. From the definitions we immediately
obtain m,,; > 0. Moreover, we can write

T"f=fa+dn+e
hence by the inductive hypothesis and the fact that 7" is order preserving,
T f > T(dy + en) = dpya.
Therefore

Opy1 >0 and ey > 0.

It remains to prove f,,; > 0. In the case n + 1 is of positive type for x we have
frni1(z) = ni1(z) — epyq(z) > 0 from the definitions. When n + 1 is of transition type
for z we will assume f,11(z) < 0 and obtain a contradiction. The fact that n+1 is a
transition integer for x implies

(2.13) n (n+2) <T" ' f(z) < eny1(x) + dpyr(2).

Notice
0<m <n 0<e <n

Given these equations, the hypothesis on T imply d; < 7 and it follows by induction
that d,, < nn for any n > 0. Hence e, + d,, < (n+ 1)n is valid for all n. This inequality
combined with equation (2.13) results in a contradiction.



The last property that we need from our construction is:
Foralln=0,1,... ,N

(2.14) /wnndu < zn:/ekdu < /fdu.
k=0

The first inequality follows from (2.12). The second inequality follows easily by induction
once we prove the following inequality

(2.15) /¢k+1du§ /sokdu —/ekdu

forallk =0,1,...,N—1. Using f, > 0, ¢, > 0 and the fact that T is L' nonexpansive
we can compute as follows:

[ ovndn= [T = Tt cydn < [ 11 — di = enkdn = [ (0~ jin

To conclude the proof of the Theorem 2.9 we notice that (2.14) proves equation (2.10).
Equation (2.11) follows by Lebesgue monotone convergence theorem. O

We are now ready to proceed with the proof of Theorem 2.7.

Proof. First assume f > 0, for a fixed real number 7, the function w(z) in Theorem 2.9
counts the number of times that 7" f(z)/(n + 1) is greater or equal 1. This function,
being integrable, is finite a.e. To handle the case of an arbitrary f € L' we introduce a
new operator S on L! defined by

Then,
(2.16) 5"(g) = —T"(—g).

The transformation S satisfies the same properties than T'. Write f = f, — f_, therefore
using equation (2.16) with ¢ = f_ and the result for nonnegative functions we obtain:

(2.17) fim L@ S @)

% () T

Using the fact that T' is order preserving,

T(=f-) <T"(f) <T"(f4).

Dividing by n, taking n — oo, using equation (2.17) and the result for nonnegative
functions the proof is complete. O



3 Upcrossings fo Chacon Processes

As it was pointed out in the introduction, the main purpose of this section is to generalize
the results in [1] to the setting of bounded Chacon Processes. These processes are not
included in the framework considered by Bishop. The key element of the proof is Lemma
3.30. By using this result we are able to make a distinction between the generalized
upcrossing function and the fluctuation function and in this way to further exploit the
symmetry present in ratio theorems. As a corollary we obtain the surprising result that
the integral of the fluctuation function for the ergodic averages has a bound which is
independent of the function. The proof consists in an extension of the techniques used
in [1], hence a certain amount of repetition will occur. Henceforth all the operators
considered will be linear. We will study upcrossings, which, we recall, are defined as
follows: given a sequence {a,},>o of real numbers and numbers o < 3, the upcrossings
of the sequence through the interval [« 3] is defined by

w=sup{k: (= (u;,v;)i=1,. k. & w; <v; <wjpyfori=1,...,k}

where ( satisfies a,, < a and a,, > [ for all » = 1,... k. We warn the reader
that the word upcrossings is sometimes used for quantities that bound from above the
upcrossings defined above. Later in this section we will redefine the upcrossings, but
this new definition will provide an upper bound for this original definition.

Definition 3.1. A collection {dy,d1,...} of (X, F, pu)-measurable, real valued, nonneg-
ative functions is said to be a Chacon (or admissible) process (with respect to a nonneg-
ative, linear, L'-contraction) if:

Td; < d;i1 holds forall >0,

where we have implicitly extended the action of T from L' to include nonnegative mea-
surable functions. If, in addition, the partial sums defined by:

satisfy

1
V(D) = sup,5,— / Dydp < 00
>ty /g
then the process is called bounded. (D) is called the time constant of the process.

Definition 3.2. A mapping
T LI(X,f,/L) — LI(X,f,/L)

18 called Markovian if T is a positive linear operator satisfying

/deu:/Xdeu VfelL.



We will study the a.e. convergence of the ratios

n

(3.3) R, (x) = Dy(z) = dp(z), Cu(z) = cx(z)

k=0

where {dy} and {c;} are Chacon processes with respect to the same operator 7. In
general, for the a.e. convergence of (3.3), we will need to require that 7" is Markovian
(T = 0 is a counterexample) but we will assume this only when it is needed. Therefore,
T will be a nonnegative L' contraction unless explicitly stated otherwise. Notice that
given three indices —1 < u; < v; < ug, a fixed pair of real numbers 0 < a < # and if
the following inequalities hold:

(3.4) gz((j)) <a

(3.5) gl((j)) > i=1,2

Then the following inequalities hold

(3.6) Dy, (x) = Dy, (z) — (a Oy, (x) — a Oy, (z)) > 1 Cyy (2)
(3.7) Dy, (x) = Dyy(7) = (o Cy, (7) — o Cp () 2 1 Cyy, ()

where 1 = [ — a. Taking into account that a Chacon process multiplied by any non-
negative real number still gives a Chacon process, we see that the the processes {acy}
and {nc;} are also Chacon processes. This fact allows us to talk only about processes
in Definition 3.8 below without mentioning the numbers o and 3. Moreover, equations
(3.6) and (3.7) show that in order to bound from above the number of where (3.4) and
(3.5) hold for a given z (i.e. the upcrossings through the interval [« 3]) it is enough to
consider the counting function defined below in (3.13). First we need:

Definition 3.8. Let {di},{q} and {px} be three Chacon processes with respect to a
positive linear contraction T. Also fix an integer N > 0. Let u,,v,, r = 1,2,..., be
elements in {—1,0,1,... , N}, such that

(3.9) ur < Uy
(3.10) v < Upyq

for all r. We denote a sequence (uy,vy)r=12,. with these characteristics by (. For a
given point x , the sequence ( will be called a sequence of generalized upcrossing times

at © for {di}, {ax} and {pi} if

(3.11) Dy, () = Dy, (z) = (Qu,1(2) = Qu, () > Py, (x)



for all r, and

(3.12) Dy, (2) = Dy, (%) = (Qu,—1(7) = Qu,, (7)) 2 Py, ()
for all r such that u,,, ts defined.

The word “generalized” refers to the fact that the v-index in equations (3.6) and (3.7)
has been replaced by the index v — 1 in equations (3.11) and (3.12), there is also greater
flexibility by allowing a non-strict inequality in (3.10). It is easily seen that this rep-
resents a more general definition than the usual upcrossings considered by Bishop (see
([1]). We will exploit this extra generality in the next section (see Theorem 4.4).

For a fixed = define:

(3.13) wy(x) =sup {k: ¢ = (Ur,vr)r=12,.. 1.}

(3.14) xn(x) =sup {max(k —1,0) : { = (up, vp)r=12,. .}

Where the supremum is taken over the finite set of all sequences of generalized upcrossing
times at x. We call wy the generalized upcrossing function. The function yy is merely
another way of counting oscillations and because of its clear relationship to the counting
function used in [8], we call it the fluctuation function.

Remarks

Consider {d,} and {¢,} to be as in equation (3.3), and define{q, = ac¢,} and {p, =
ne,} then the function wy is an upper bound for the upcrossings of the ratios (3.3)
through the interval [a, o + 7]
The first result of this section is the following theorem:.

Theorem 3.15. Given three Chacon processes {dy},{qr} and {py} with respect to a
Markovian transformation T then:
For each N > 0,

(3.16) [wnmn < 24(D)

(3.17) /pro dp < 279(Q)
where (3.16) or (3.17) hold if {dy} or {qr} are bounded processes respectively.

Remarks

From the above theorem, convergence a.e. in appropiate sets for the ratios (3.3)
can be established by standard arguments ([3], [4]). Roughly speaking, in equations
(3.16) and (3.17), the integrals of the oscillations of the ratios are bounded by the time



constants of each process respectively. The difference between both equations is the
following: while the hypothesis (D) < oo gives convergence of (3.3) in R, the condition
7(Q) < oo proves that the fluctuation function is finite a.e., however the ratios (3.3)
may still diverge to co. The bound given in equation (3.16) can be improved, at least
for the case where dj, = T*d, and T is induced by a measure preserving transformation
in a finite measure space. This is done in [8].

As it was shown in section 2, we now proceed to define a filling scheme which will
be the key to the proof. In contrast to the filling scheme in section 2 this construction
is not indexed by “upcrossing times,” but “filling times,” internal to the construction,
are defined. We refer to [1] for a motivation of the functions defined below.

It should be noted that we construct ¢, 1, @ni1, Tnit, Kntt, Prt1s Onse1 during step n,
since these functions refer to conditions just before step n+1. We also construct functions
ens by, fn, gn during step n. These functions describe results of operations during step n.
The functions p,,o, are measurable functions taking nonnegative integer values (the
filling times).

Given three Chacon process, we can define the following construction:

Initial Definitions

Let
o = dy, Oy = qo, T = Ko = Po, po = 09 = 0.

Step n

Suppose that we have already defined ,,, 0,,, 7, K, Pn, 0, for some n =0,1,....

First Turn

On {p, =0,} let e, = ¢, Am,. On {p, = 0,}let e, =0. On {p, =0, }N{e, = m,} let
Pn+1 = Pn T 17 Tp+1 = Po- On ({pn - Un} N {en - 7-‘—n})c let Pn+1 = Pny Tnt+1 = Tp — €En.
Second Turn

On {ppy1 = op + 1} let hy = 0, A k. On {pyy1 = o, + 1} let hy, = 0. On {p,1 =
on+ 1} N {h, =k} let 041 =0 + 1, Bpg1 = po- On ({ppi1 = 0 + 1} N {h, = K, })°
let 0,01 = 0p, Kpa1 = Kn — hyp.

Third Turn
Let f, = ¢n — €n, g = 0,, — h,,, and define

n

o n+1—k
Pn+1 = dn—l—l - E T €k
k=0

10



n

Oni1 = Qi1 — ZTnﬂfkhk-
k=0

[t is easy to see by induction that the sequences (p,) and (o,) are nondecreasing, and
that

(318) On S Pn S Pn+1 S on + 1

for all n. In particular p,, < n for all n.
The following identities are easily proven

(3.19) dy=fot Y T "
k=0

(3.20) Gn+1 = Ggn + ZT"‘khk.
k=0

A simple induction shows that ¢, e, and 7, are nonnegative for all n > 0. In fact, this
is true for n = 0 and suppose it holds for n. It follows from the definitions that 7, ; > 0
and by the inductive hypothesis f, > 0. Using the fact that {dy} is a Chacon process
and equation (3.19)

Pt =1 — > T e, > Tf, > 0.
k=0

A similar argument shows 6,,, x,, and h,, are also nonnegative functions. Then, it follows
that for all n we have

(3.21) 0<e,<m <py, 0<h,<k,<pp.

The filling scheme just defined is the same that the one introduced in [1] but with a
different definition (here adapted to the Chacon processes) for the functions ¢, and 6,.
The following lemma is easily proven:

Lemma 3.22. For alln=-1,0,1,...

)

n

(3.23) Z ek = Pp+1P0 + (Po — Tnt1)
k=0

and

(3.24) Z b, = ons1po + (Po — Knt1)-
k=0

11



We define the quantities:

n—1 n n—1
(3.25) an=po+ Y (h—er), Bu=D er—» M
k=0 k=0 k=0
for each n = 0,1,.... We also let a,, = py and 3, = 0 for all negative integers n. It
follows easily from the definitions that for all n > 0,
(3'26) Qp — e+ Bp =po, Qg1+ By — hy = po.

Also whenever p, = 0, (and hence {x, = po}) using Lemma 1 and (3.26) we obtain

(3.27) Oy =T, Bn=po— (mp —en), foralln >0.

Moreover whenever p,1 = 0,+1 (and hence {7,+1 = pp}) using Lemma 1 and equation
(3.26) we obtain

(3.28) Qpy1 = Do — (Kn — hn)y Bn =Ky foralln>0.
Therefore the following relations are valid

for all n.

The proof that follows is essentially contained in Lemma 3 from [1]. There are some
subtle differences due to our particular setting, therefore, for the sake of completeness,
we present the main steps in the proof.

Lemma 3.30. We use the notation from Definition(3.8) , let U be the set of all se-
quences ¢ = (Up, Uy )p=1,2,.. Satisfying (3.9) and (3.10). For any ¢ € U, let H(C) be the
set of x such that ¢ is a sequence of generalized upcrossing times at x for {d,} , {q¢;}

and {pT‘} Let C € Z/[, C = (Ura Ur)r:1,2,...,k.-
(1) If r < k then,

(3.31) r < py,+1 almost everywhere on H ((),

and
(i) If r < k — 1 then,

(3.32) r < oy,,,+1 almost everywhere on H(().

12



Proof. For a fixed k we will prove the result by an induction on n € {-1,0,... ,N}.
The inductive hypothesis is the following:

a) Statement i) above holds for all r such that v, < n.
b) Statement ii) above holds for all r such that u,; < n.

For n = —1 the inequalities v, < n and u,y; < n never hold. Assume that i) and ii)
hold for n = —1,0,... ,m — 1, for some m > 0. We will prove that they also hold for
n=m.

Suppose v, = m, if we set [ = u, then [ < m. By the inductive hypothesis it follows
that 7 — 1 < p;yq almost everywhere on H(¢). We would like first to conclude i), i.e.
r < pm+1 almost everywhere on H(¢). On the set {py = r — 1} N {f; = 0}, for any
Jj=1+1,...,m, we conclude from the definition of p;y; and the fact that r —1 < p;4;
that » < p;;1. Therefore we need only consider py,;; on the set

A={pm=r—1}n{fizi=0}n...{frn=0} N H().

Using the equations (3.11), (3.19) and (3.20) we obtain that the following inequality is
valid on the set A

m m j m—1 j
(3.33) o< Y ) T e = >N T Fhy
j=0 j=1+1 k=0 J=l+1 k=0

Using the relationship 77py < p;, exchanging the order of sums, using the definition of
a, and f3,, and integrating over A, we have

(3.34) S [ @ pdi < Y [T G+ s~ mhdn

Given that 0 < «,,, 8, < py we conclude

(T*j)ﬁm—i = (T*j)po

almost everywhere for each j =0, ... ,m, hence 3,, = py almost everywhere on A. From
equation (3.27) it follows that e, = m,, hence p,i1 = pp +1 =7r—1+1o0n A. So
Pm+1 > r. This argument completes the proof of a). The proof of b) is analogous, we
refer to reference [1] for details. O

The preceeding lemma provides a very detailed description of how the filling times
p(z) and o(z) count the number of upcrossings and fluctuations respectively. In the
next corollary we explicitly state what we are going to actually need from Lemma 3.30.

Corollary 3.35. Almost everywhere on the set X the following inqualities hold:
(3.36) wy(z) < py41(2)

13



(3.37) v (@) < onyi(x).

With these results we can proceed with the proof of Theorem 3.15.

Proof. Let’s assume that y(D) < co. From (3.19) and the fact that 7" is Markovian we
obtain for every n,

2n+1

> / dydp.
k=0

Therefore, using equations (3.21), (3.23) and (3.36) we conclude

N
1

/wNpodMS/PN+1p0dM§Z/6de§ —

— N +1

Similarly, if v(Q) < oo we obtain:

(3.38) (n+2) En:/ekdu <

2N+1

> /dkdug 2 (D).

N 2N+1
1
/XNpodMS /0N+1podu§ Z/hkduﬁ N1 /qkdus 27(Q).
k=0 k=0
O

It is important to remark that the condition of 7" being Markovian is only used in
equation (3.38). This condition is not used in any of the intermediate results which lead
to Theorem 3.15 either. Under the assumption that {d} is actually an additive process
and T is an L' contraction we can derive:

N
Z/ekdu < /dodu.
k=0

This equation and an argument similar to the given above can be used to prove an u.i.
in the setting of Chacon theorem (see [5], p. 377):

Theorem 3.39. Given two Chacon processes {qr}, {px} and an additive process {dy}
with respect to a positive L' contraction T then:
For each N > 0,

(3.40) /wNpg dp < /dodu.
Corollary 3.41. Consider the ergodic averages

1 n
R, (z) = E T*dy
k=0

n+1

14



where T is a positive linear contraction satisfying T'1 < 1 and in Definition 3.15 take
{dp =T"do}, {qr = a} and {pr. = n} equation (3.17) becomes

apu(X)
(3.42) /XNdug y

Whenever u(X) is finite, equation (3.42) gives the surprising result that for a fixed n we
get a uniform bound in « independently of d.

4 Bishop’s Lemma

In this section we will use Theorem 3.15 to stablish Lemma 1 from [2]. This is an
interesting combinatorial inequality which, as proven in [2], implies Lebesgue’s differen-
tiation theorem, the ergodic theorem for measure preserving transformations and Doob’s
martingale theorem. We will also indicate how an improved version of the upcrossing
inequalities presented in the previous section implies integral bounds for the oscillations
of ergodic averages. Oscillations in Ergodic Theory have recently received due atten-
tion in [6]. Let us consider the situation described in Bishop first. Here we are given
real numbers @ < 3 and a set of points I' € R?, T' = {z!,¢!,... 2" y"}, where I is
elementary. In particular this means that

(4.1) wy ! —an™ <y —ay;
fort:=1,...,n — 1. Moreover, the following also holds for an elementary set I'
vt =yl b <yl for i=1,...,n.

Below we define the counting function considered by Bishop.

Definition 4.2. Given real numbers «, 3 as above, an elementary set T' |, z = (21, 22) €
R? and t € R. Then define

w(z,a, B,T) =sup{k : Iz*, y',... 2% o* € T with property P(z,a, 3)}.

Where the points x*,y', ... 2% y* € T' are said to have the property P(z, o, 3) if

2 < i, wh—axl < 2 —azl, and 25 — B2 < yh — By, forall 1 <i<k.
Finally define:
(43) w(t, o, B,T) = supfw(z,a, 4,T) : 21 = t}

Theorem 4.4. If T is elementary

n

[wtt.aus Dyt < (5 - ) (04 - ).
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Proof. Let
(4.5) B = {x1,...,27}.

Let ¢ = {u,v',...,u¥ v*} C T, where u} < ¢! for all i and v} < u}™ for all i =
1,...,k — 1. Then we will say that ¢ is an admissible sequence of length k. For any
t € R we will say that ¢ is t-admissible if ¢ < u] and if for all 4,7 € {1,...,k} we have

(4.6) (uh — aui) — (v5 — Bv]) < (B —a)t.
Define the function x on R by
(4.7) k(t) = sup{length ¢ : @ is t—admissible}.
It is easy to see that

K(t) > w(t, o, 8, 1),
where w(t, a, 3,T) is the quantity defined above.

We are required to prove:

n

(48) [ <1/ - ) >0k - ).

=1

Suppose that d; > 0, Ly = 6, Z. Clearly

(4.9) / wdt = lim 5, 3" w(t — 6)

teLy,

By an approximation argument we can easily reduce the proof to the case where for
some § > 0 we have B C 6Z. Thus we can choose d; ~\, 0 such that B C §,Z for all k.
Thus to prove Lemma 1 of [2] it is enough to show for any § > 0 with B C ¢Z we have

n

(4.10) 03 K(t—=08)<1/(B—0a)) (yh—a)).

teL—-B =1

Fix 0, and let 7 : L — L be defined by 7(¢) = t+¢. Define T on functions by T'f = for.
Let J be a finite interval of L containing B, and large enough so that J contains any
point ¢ in L with k() > 0. (It is easy to see that such an interval exists). Let

(4.11) p=(8—a«a)il,.
Let
(4.12) flay) = y5 — a3,

fori=1,...,n, and let f(t) =0 for all other ¢ € L. Let

(4.13) g(21) = yp — 25" +afatt —a7),
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fori = 1,...,n — 1, and let g(t) = 0 for all other ¢t € L. Let t € L — B and let
Y = (u',v");=1,. k be (t — §)-admissible. For each i = 1,...,k, there exists m; such that
either u' = ™ or u’ = y™. After considering (4.6) for a moment we notice that we can
modify 1), if necessary, to ensure that u* = x™. Similarly we can ensure that for each
j =1,...,k there exists some ¢; such that v/ = y%. We would like to show that the
quantities T, f, g, p have at least k upcrossings at x. To do that we have to construct
an upcrossing sequence in the sense of Section 3. We can’t work with the letters u and
v because we have used them when re-writing Bishop’s definition (i.e Definition 4.2),
therefore, we will call our times &, and 7,.. Let & be that nonnegative integer such that

(4.14) o) = ul = 2™,
forr=1,...,k.
Let 1, be that positive integer such that
(4.15) T (t) = o] = a7,
forr=1,...,k.
Let
(4.16) o =inf{z} : t <2t}
Now consider )
Y T(f-9t)= Y (f—9lx)
Jj=0 q<i<my

This is

> 10— 5) - (5 = o5") — (el = a})] = a5 — of — aaf” —af).

q§i<mr

Hence we have shown that
(4.17) ZTJ f=9)(t) =ul — aul — (2§ — axi).

We also want to consider

ST g )0+ T ) = 3T~ )e) 417 5 ZTJ
This is

(418) > (f—g)(@h) + f(zl) = (B—a)(a] —t+0) =

q<i<ly
v —af — ey —af) + vy — @) — (B - a)(ay — 1t +9).
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Hence we have shown that

nr—1

(4.19) ZTj(f—g—p)(t) + T (f = p)(t) = vy — Bof — (25 — axf) + (B — a)(t = 9).

Using these equations and (4.6) (with ¢ replaced by t—¢) it follows easily that &, n,. ..,
&g, i 1s a generalized upcrossing sequence at t. Hence we have shown that for any
t € L — B we have

(4.20) K(t — 8) < w(t),

where w is the function defined in our paper rather than one of the functions in Bishop.
By Theorem 3.15 from Section 3 we then have

(4.21) S k(e —o)p(t) < 3 (1),

teL—B teL

and this is (4.10). O

We will end this section by presenting a simple argument that links the notion of
upcrossings to oscillations (see definition below). For the rest of this section we use
the following notation and assumptions: for f € L'(X) (X a finite measure space),
Anf(x) = 725 Yoy T" f(2) denotes the Cesaro averages for a positive linear contraction
T satisfying T1 < 1. We also define A_; f(z) = 0 for all z.

Definition 4.22. For a fized integer N > 0, a real number n > 0 and x € X, define

ZN,TI(J“) = Sup{k : g = (tr)rzl,...,lc.}

where & satisfies:

1<t <ty...<t, <N

and
(4.23) |Ap, fx) = A f(x)| >n, forallr=1,... k-1

also define
zy(x) = sup{zn,(z) : N > 0}

the function z, will be called the oscillation function (also called n-jumps, see [6]).

We will use a result on upcrossing inequalities established by Bishop in [3] (Theorem 6
and Corollary pp. 236-238, see also [4]). Before stating this theorem, we introduce some
notation. The function wy,q(z) in the theorem below is defined as follows: for f € L,
an integer N > 0, a real number «, and a real number 1 > 0 define

(424) wN,n,a(x) = Sup{k : C = (uTavT)T‘Zl,...,k.}
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where the sequence ( satisfies,

(4.25) 1<y <y <u<...<v, <N
(4.26) Ay f(x) <a and A, f(z) > (a+7n)
forr=1,... k.

Bishop’s theorem is:

Theorem 4.27. For N,a,n and f as above:
1
/wN,q,adM < 5/(f —a)idp
Remark

Theorem 4.27 is true in a more general setting, in fact the upcrossing function con-
sidered by Bishop is an upper bound for the function defined above. We also remark that
our generalized upcrossing function from the previous section is also an upper bound for
the function wy,y o; however Theorem 3.39 is not strong enough to establish Theorem
4.28 below.

The following theorem generalizes results from [6] to the operator case.

Theorem 4.28. Let f € L*(X), f > 0 and a real number n > 0, then:

(4.29) /zndu < %/ﬁdu.

Proof. We will prove:
8
/ZN,ndM < ﬁ/ﬁdlﬁ

Define a; =i & for i =1,.... Also define:

o0
1) = Y wn g (0)
=0

We now make the key observation that for all  where the quantities are defined:

(4.30) zng() < 2wy (z).

Using Theorem 4.27 we compute:

i/wN,z,aldﬂ< Z/ f—a;)dp < - /Z —i— du<—/f2du
i=1

{f>a;} =1

2f

Hence by Fubini’s theorem,

8
/ZN,n(x)dMS /2wN,gd,u§ ?/Jﬂdﬂ-
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